16.39
0
Generally it is noticed that while charging batteries people hardly pay any special attention toward the procedures. For them charging a battery is simply connecting any DC supply with matching voltage with the battery terminals.

I have seen motor garage mechanics charge all types of batteries with the same power supply source irrespective of the AH rating associated with the particular batteries.

That's gravely wrong! That's like giving the batteries a slow "death". Lead Acid batteries to a very extent are rugged and are capable of taking on the crude charging methods, however it's always recommended to charge even the LA batteries with a lot care. This "care" will not only increase the longevity but will also enhance the efficiency of the unit.

Ideally all batteries should be charged in a step wise manner, meaning the current should be reduced in steps as the voltage nears the "full charge" value.

For a typical Lead Acid battery or an SMF/VRL battery the above approach can be considered very healthy and a reliable method. In this post we are discussing one such automatic step battery charger circuit which can be effectively used for charging most of the rechargeable types of batteries.

Referring to the circuit diagram below, two 741 ICs are configured as comparaters. The presets at pin#2 of each stage is adjusted such that the output goes high after specific voltage levels are identified, or in other words the outputs of the respective ICs are made to go high in sequence after predetermined charge levels are accomplished discretely over the connected battery.

The IC associated with RL1 is the one which conducts first, after say the battery voltage reaches around 13.5V, until this point the battery is charged with the maximum specified current (determined by the value of R1).

Once the charge reaches the above value, RL#1 operates, disconnect R1 and connects R2 in line with the circuit.

R2 is selected higher than R1 and is appropriately calculated to provide a reduced charging current to the battery.

Once the battery terminals reaches the maximum specified charging voltage say at 14.4V, Opamp supporting RL#2 triggers the relay.

RL#2 instantly connects R3 in series with R2 bringing down the current to a trickle charge level.

Resistors R1, R2, and R3 along with the transistor and the IC LM338 forms a current regulator stage, where the value of the resistors determines the maximum allowable current limit to the battery, or the output of the IC LM338.

At this point the battery may be left unattended for many hours, yet the charge level remains perfectly safe, intact and in a topped up condition.

The above 3 step charging process ensures a very efficient way of charging resulting in almost a 98% charge accumulation with the connected battery.

The circuit has been designed and invented by "Swagatam"




R1 = 0.6/ half battery AH

R2 = 0.6/one fifth of battery AH

R3 = 0.6/one 50th of battery AH.

0 komentar: